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Abstract. An estimation method for the copula of a continuous mul-
tivariate distribution is proposed. A popular class of copulas, namely
the class of hierarchical Archimedean copulas, is considered. The pro-
posed method is based on the close relationship of the copula structure
and the values of Kendall’s tau computed on all its bivariate margins. A
generalized measure based on Kendall’s tau adapted for purposes of the
estimation is introduced. A simple algorithm implementing the method
is provided and its effectiveness is shown in several experiments includ-
ing its comparison to other available methods. The results show that the
proposed method can be regarded as a suitable alternative to existing
methods in the terms of goodness of fit and computational efficiency.
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1 Introduction

Studying relationships among random quantities is a crucial task in the field of
knowledge discovery and data mining (KDDM). Having a dataset collected, the
relationships among the observed variables can be studied by means of an appro-
priate measure of stochastic dependence. Under assumption of the multivariate
continuous distribution of the variables, the famous Sklar’s theorem [29] can be
used to decompose the distribution in two components. While the first compo-
nent describes the distributions of the univariate margins, the second component
describes the copula of the distribution containing the whole information about
the relationship among the variables. Thus, studying dependencies among the
random variables can be restricted without any loss of generality to studying the
copula.
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Despite the fact that copulas have most success in finance, they are increas-
ingly adopted also in KDDM, where they are used due to their effective mathe-
matical ability to capture even very complex dependence structures among vari-
ables. We can see applications of copulas in water-resources and hydro-climatic
analysis [4,13,14,17,19], gene analysis [18,31], cluster analysis [3,15,26] or in evo-
lution algorithms, particularly in the estimation of distribution algorithms [7,30].
For an illustrative example, we refer to [13], where the task for anomaly detec-
tion in climate that incorporates complex spatio-temporal dependencies is solved
using copulas.

Hierarchical Archimedean copulas (HACs) are a frequently used alternative
to the most popular Gaussian copulas due to their flexibility and conveniently
limited number of parameters. Despite their popularity, feasible techniques for
HAC estimation are addressed only in few papers. Most of them assume in the
estimation process a given structure of a copula, which is motivated trough ap-
plications in economy, see [27,28]. There exists only one recently published paper
[23], which addresses the estimation technique generally, i.e., the estimation also
concerns the proper structure determination of the HAC.

The mentioned paper describes a multi-stage procedure, which is used both
for the structure determination and the estimation of the parameters. The au-
thors devote mainly to the estimation of the parameters using the maximum-
likelihood (ML) technique and briefly mention its alternative, which uses for the
parameters estimation the relationship between the copula parameter and the
value of Kendall’s tau computed on a bivariate margin of the copula (shortly,
θ−τ relationship). The authors present six approaches denoted as τ∆τ>0, τbinary,
Chen, θbinary, θbinary aggr. and θRML to the structure determination. The first
two approaches are based on the θ− τ relationship, the third approach is based
on the Chen test statistics [2] and the last three approaches are based on the
ML technique. The first five approaches lead to biased estimators, what can be
seen in the results of the attached simulation study, and the the sixth (θRML) is
used for re-estimation and thus for better approximation of the parameters of the
true copula. θRML shows the best goodness-of-fit (measured by Kullback-Leibler
divergence) of the resulting estimates. However, the best approximation of the
true parameters with θRML is possible only in the cases, when the structure is
properly determined (the estimated structure equals the true structure). But, as
θRML is based on the biased θbinary aggr., which often does not return the true
structure due to the involved bias, θRML also cannot return close approximation
of the true parameters in the cases, when the structure is determined improperly.
Moreover, the number of those cases rapidly increases with the increasing data
dimension, as we show later in Section 4.

In our paper, we propose the construction of the estimator for HACs that
approximates the parameters of the true copula better than the previously men-
tioned methods, and thus also increases the ratio of properly determined struc-
tures. Avoiding the need of re-estimation, we also gain high computational effi-
ciency. The included experiments on simulated data show that our approach out-
performs all the other above mentioned methods in the sense of goodness-of-fit,
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the properly determined structures ratio and also in the time consumption, which
is even slightly lower than the most efficient binary methods τbinary, θbinary.

The paper is structured as follows. The next section summarizes some nec-
essary theoretical concepts concerning Archimedean copulas (ACs) and HACs.
Section 3 presents the new approach to the HAC estimation. Section 4 describes
the experiments and their results and Section 5 concludes this paper.

2 Preliminaries

2.1 Copulas

Definition 1. For every d ≥ 2, a d-dimensional copula (shortly, d-copula) is
a d-variate distribution function on Id (I is the unit interval), whose univariate
margins are uniformly distributed on I.

Copulas establish a connection between general joint distribution functions
(d.f.s) and its univariate margins (in text below we use only margin for term
univariate margin), as can be seen in the following theorem.

Theorem 1. (Sklar’s Theorem) [29] Let H be a d-variate d.f. with univariate
margins F1, ..., Fd. Let Aj denote the range of Fj, Aj := Fj(R)(j = 1, ..., d),R :=

R ∪ {−∞,+∞}. Then there exists a copula C such for all (x1, ..., xd) ∈ Rd,

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (1)

Such a C is uniquely determined on A1 × ... × Ad and, hence, it is unique if
F1, ..., Fd are all continuous. Conversely, if F1, ..., Fd are univariate d.f.s, and if

C is any d-copula, then the function H : Rd → I defined by (1) is a d-dimensional
distribution function with margins F1, ..., Fd.

Through the Sklar’s theorem, one can derive for any d-variate d.f. its copula
C using (1). In case that the margins F1, ..., Fd are all continuous, the copula
C is given by C(u1, ..., ud) = H(F−1 (u1), ..., F−d (ud)), where F−i , i ∈ {1, ..., d}
denotes pseudo-inverse of Fi given by F−i (s) = inf{t| Fi(t) ≥ s}, s ∈ I. Many
classes of copulas are derivable in this way from popular joint d.f.s, e.g., the
most popular class of Gaussian copulas is derived using H corresponding to a
d-variate Gaussian distribution. But, using this process often results in copulas
not expressible in closed form, what can bring difficulties in some applications.

2.2 Archimedean Copulas

This drawback is overcame while using (exchangeable) Archimedean copulas,
due to their different construction process. ACs are not constructed using the
Sklar’s theorem, but instead of it, one starts with a given functional form and
asks for properties needed to obtain a proper copula. As a result of such a
construction, ACs are always expressed in closed form, which is one of the main
advantages of this class of copulas [10]. To construct ACs, we need the notion of
an Archimedean generator and of complete monotonicity.
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Definition 2. Archimedean generator (shortly, generator) is a continuous, non-
increasing function ψ : [0,∞]→ [0, 1], which satisfies ψ(0) = 1, ψ(∞) = limt→∞
ψ(t) = 0 and is strictly decreasing on [0, inf{t : ψ(t) = 0}]. We denote the set of
all generators as Ψ .

Definition 3. A function f is called completely monotone (shortly, c.m.) on
[a, b], if (−1)kf (k)(x) ≥ 0 holds for every k ∈ N0, x ∈ (a, b). We denote the set
of all completely monotonous generators as Ψ∞.

Definition 4. Any d-copula C is called Archimedean copula (we denote it d-
AC), if it admits the form

C(u) := C(u;ψ) := ψ(ψ−1(u1) + ...+ ψ−1(ud)),u ∈ Id, (2)

where ψ ∈ Ψ and the ψ−1 : [0, 1] → [0,∞] is defined ψ−1(s) = inf{t : ψ(t) =
s}, s ∈ I.

For verifying whether function C given by (2) is a proper copula, we can use
the property stated in Definiton 3. A condition sufficient for C to be a copula is
stated as follows.

Theorem 2. [21] If ψ ∈ Ψ is completely monotone, then the function C given
by (2) is a copula.

We can see from Definition 4 and from the properties of generators that hav-
ing a random vector U distributed according to some AC, all its k-dimensional
(k < d) marginal copulas have the same marginal distribution. It implies that
all multivariate margins of the same dimension are equal, thus, e.g., the de-
pendence among all pairs of components is identical. This symmetry of ACs is
often considered to be a rather strong restriction, especially in high dimensional
applications.

Given the number of variables, to derive the explicit form of an AC to work
with, we need the explicit form of generators. The reader can find many explicit
forms of the generators in, e.g., [22]. In this paper, we use and present only the
Clayton generator, defined (1 + t)−1/θ, which corresponds to the family of the
Clayton copulas. Copulas based on this generator have been used, e.g., to study
correlated risks, because they exhibit strong left tail dependence and relatively
weak right tail dependence. The explicit parametric form of a bivariate Clayton

copula is C(u1, u2;ψ) =
(
u1
−θ + u2

−θ − 1
)− 1

θ [22].

2.3 Hierarchical Archimedean Copulas

To allow for asymmetries, one may consider the class of HACs (often also called
nested Archimedean copulas), recursively defined as follows.

Definition 5. [11] A d-dimensional copula C is called hierarchical Archimedean
copula if it is an AC with arguments possibly replaced by other hierarchical
Archimedean copulas. If C is given recursively by (2) for d = 2 and

C(u;ψ1, ..., ψd−1) = ψ1(ψ−11 (u1) + ψ−11 (C(u2, ..., ud;ψ2, ..., ψd−1))),u ∈ Id, (3)



5

for d ≥ 2, C is called fully-nested hierarchical Archimedean copula (FHAC)3

with d − 1 nesting levels. Otherwise C is called partially-nested hierarchical
Archimedean copula (PHAC)4.

Remark 1. We denote a d-dimensional HAC as d-HAC, and analogously d-FHAC
and d-PHAC.

From the definition, we can see that ACs are special cases of HACs. The
most simple proper 3-PHAC is with two nesting levels. The copula is given by

C(u;ψ1, ψ2) = C(u1, C(u2, u3;ψ2);ψ1)

= ψ1(ψ−11 (u1) + ψ−11 (ψ2(ψ−12 (u2) + ψ−12 (u3)))),u ∈ I3. (4)

As in the case of ACs, we can ask for necessary and sufficient condition for
the function C given by (3) to be a proper copula. Partial answer to this question
in form of sufficient condition is contained in the following theorem.

Theorem 3. (McNeil (2008)) [20] If ψj ∈ Ψ∞, j ∈ {1, ..., d − 1} such that
ψ−1k ◦ ψk+1 have completely monotone derivatives for all k ∈ {1, ..., d− 2}, then
C(u;ψ1, ..., ψd−1), u ∈ Id, given by (3) is a copula.

McNeil’s theorem is stated only for fully-nested HACs, but it can be eas-
ily translated also for use with partially-nested HACs (for more see [20]). The
condition for (ψ−11 ◦ ψ2)′ to be compete monotone is often called the nesting
condition.

A d-HAC structure, which is given by the recursive nesting in the definition,
can be expressed as a tree with k ≤ d− 1 non-leaf nodes (shortly, nodes), which
correspond to the generators ψ1, ..., ψk, and d leafs, which correspond to the
variables u1, ..., ud. If the structure corresponds to a binary tree, then k = d− 1.
In other case k < d − 1. Thus, a HAC structure is viewed as a tree in the next
text. Also, for the sake of simplicity, we assume only binary HAC structures.

Let s be the structure of a d-HAC. Each 2-AC is determined just by its
corresponding generator, and, if we identify each node in s with one generator,
we have always nodes ψ1, ..., ψd−1. For a node ψ denote as Dn(ψ) the set of all
descendant nodes of ψ, P(ψ) the parent node of ψ, Hl(ψ) the left child of ψ and
Hr(ψ) the right child of ψ.

For simplicity, a d-HAC structure s is denoted as a sequence of reordered
indices {1, ..., d} using parentheses to mark the variables with the same parent
node. For example, the structure of the copula given by (4) is denoted as (1(23)).
The inner parenthesis corresponds to the fact that for the variables u2, u3 is
P(u2) = P(u3) = ψ2. As u2, u3 are connected through their parent, we can
introduce a new variable denoted as z23, which represents the variables u2, u3
and is defined as z23 = C(u2, u3;ψ2). Then (4) turns in ψ1(ψ−11 (u1)+ψ−11 (z23)) =
C(u1, z23;ψ1), and thus the outer parenthesis in the notation of the structure
corresponds to the fact that for the variables u1, z23 is P(u1) = P(z23) = ψ1.

3 sometimes called fully-nested Archimedean copula
4 sometimes called partially-nested Archimedean copula
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u1 u2

z12

u3 u4 u5

z45

z3(45)

z(12)(3(45))

u1 u2 u3

z23

u4 u5

z45

z(23)(45)

z1((23)(45))

Fig. 1. On the left side is depicted the 5-PHAC structure denoted as ((12)(3(45))) and
on the right side is depicted the 5-PHAC structure denoted as (1((23)(45))).

The structure of the 4-FHAC given as in Definition 5 is denoted as (1(2(34))),
for 5-FHAC, it is (1(2(3(45)))), etc. Analogously, for PHACs, ((12)(3(45))) and
(1((23)(45))) denote the structures depicted on the left and the right side in
Figure 1.

When using HACs in applications, there exist, for example for d = 10, more
than 280 millions of possible HAC structures (including also non-binary ones)
and each 10-HAC can incorporate up to 9 parameters (using only one-parametric
generators) in generators from possibly different families. If choosing the model
that the best fit the data, this is much more complex situation relative to the
case when using ACs, which have just one structure, one parameter and one
Archimedean family.

To derive the explicit parametric form a d-HAC C, we need the explicit
parametric forms of its generators ψ1, ..., ψd−1, which involve the parameters
θ1, ..., θd−1 (θi corresponds to the generator ψi, i = 1, ..., d − 1), and its struc-
ture s. Due to this, the copula C is also denoted as C(ψ, θ; s)(u1, ..., ud) in
the rest of the text. For example, the 3-HAC that is given by (4) and assum-
ing both of its generators ψ1, ψ2 to be Clayton generators, can be denoted as
C(ψ1, ψ2, θ1, θ2; (1(23))) and its parametric form is given as

C(ψ1, ψ2, θ1, θ2; (1(23))) =

(((
u2
−θ2 + u3

−θ2 − 1
)− 1

θ2

)−θ1
+ u1

−θ1 − 1

)− 1
θ1

.

(5)

2.4 Kendall’s tau and its generalization

The standard definition of Kendall’s tau for two random variables X,Y is given
as follows. Let (X1, Y1) and (X2, Y2) be independent random vectors with the
same distribution as (X,Y ). Then the population version of Kendall’s tau is
defined as the probability of concordance minus the probability of discordance,
i.e.,

τ = τXY = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0). (6)
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As we are interested in Kendall’s tau relationship to a general bivariate copula,
we use its definition given by (as in [4])

τ(C) = 4

∫
I2
C(u1, u2)dC(u1, u2)− 1. (7)

If C is a 2-AC based on a generator ψ, and ψ depends on the parameter θ ∈ R,
then (7) states an explicit relationship between θ and τ , which can be often
expressed in a closed form. For example, if C is a Clayton copula, we get τ =
θ/(θ+2) (the relationship between θ and τ for other generators can be found, e.g.,
in[10]). The inversion of this relationship establish an estimator of the parameter
θ, which can be based on the empirical version of τ given by (as in [4])

τn =
4

n(n− 1)

n∑
i=1,j=1

1{(ui1−uj1)(ui2−uj2)>0}, (8)

where (u•1, u•2) denotes the realizations of r.v.s (U1, U2) ∼ C.
This estimation method was introduced in [5] as a method-of-moments esti-

mator for bivariate one-parameter Archimedean copulas. The copula parameter
θ ∈ Θ ⊆ R is estimated by θ̂n such that τ(θ̂n) = τn, where τ(θ) denotes Kendall’s
tau of the corresponding Archimedean family viewed as a function of the param-
eter θ ∈ Θ ⊆ R, i.e., that θ̂n = τ−1(τn), assuming the inverse τ−1 of τ exists.
If the equation has no solution, this estimation method does not lead to an es-
timator. Unless there is an explicit form for τ−1, θ̂n is computed by numerical
root finding[12].

This estimation method can also be generalized for ACs when d > 2, see
[1,12,16,28]. The generalized method is using pairwise sample version of Kendall’s
tau. If τnij denotes the sample version of Kendall’s tau between the i-th and j-th
data column, then θ is estimated by

θ̂n = τ−1
((

d

2

)−1 ∑
1≤i≤j≤d

τnij

)
. (9)

As can be seen, the parameter is chosen such that Kendall’s tau equals the
average over all pairwise sample versions of Kendall’s tau. Properties of this
estimator are not known and also not easy to derive since the average is taken

over dependent data columns [12]. However,
(
d
2

)−1∑
1≤i≤j≤d τ

n
ij is an unbiased

estimator of τ(θ). This is an important property and we transfer it later to
the estimator that we use for the structure determination, which we base on
appropriately selected pairwise sample versions of Kendall’s tau.

To use the generalized method mentioned in the previous paragraph with
HACs, we define a generalization of τ for m (possibly > 2) random variables
(r.v.s). For simplification denote the set of pairs of r.v.s as UIJ = {(Ui, Uj)|(i, j) ∈
I × J}, where I, J ⊂ {1, ..., d}, I 6= ∅ 6= J, (U1, ..., Ud) ∼ C, C is a d-HAC.

Definition 6. Let τ be the Kendall’s tau, g : [0, 1]k → [0, 1], k ∈ N, be an
aggregation function (like, e.g., max, min or mean), which has the following
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properties: 1) g(u, ..., u) = u for all u ∈ I and 2) g(up1 , ..., upk) = g(u1, ..., uk) for
all u1, ..., uk ∈ I and all permutations p of {1, ..., k}. Then define an aggregated
Kendall’s tau τg as

τg(UIJ) =

{
τ(Ui, Uj) if I = {i}, J = {j}
g(τ(Ui1 , Uj1), τ(Ui1 , Uj2), ..., τ(Uil , Ujq )), else,

(10)

where I = {i1, ..., il}, J = {j1, ..., jq} are non-empty disjoint subsets of {1, ..., d}.

As the aggregated τg depends only on the pairwise τ and the aggregation
function g, we can easily derive its empirical version τgn just by substituting τ
in τg by its empirical version τn given by (8). Then, analogously to the case of

ACs, the parameter is estimated as θ̂n = τ−1(τgn). But, as all bivariate margins
of a HAC are not assumed to be identical, each estimate is computed just on
some appropriately selected ones. This is later explained by Remark 2.

2.5 Okhrin’s algorithm for the structure determination of HAC

We recall the algorithm presented in [24] for the structure determination of HAC,
which returns for some unknown HAC C its structure using only the known forms
of its bivariate margins. The algorithm uses the following definition.

Definition 7. Let C be a d-HAC with generators ψ1, ..., ψd−1 and (U1, ..., Ud) ∼
C. Then denote as UC(ψk), k = 1, ..., d−1, the set of indexes UC(ψk) = {i|(∃Uj)
(Ui, Uj) ∼ C(·;ψk) ∨ (Uj , Ui) ∼ C(·;ψk), 1 ≤ i < j ≤ d}, k = 1, ..., d− 1.

Proposition 1. [24] Defining UC(ui) = {i} for the leaf i, 1 ≤ i ≤ d, there is an
unique disjunctive decomposition of UC(ψk) given by

UC(ψk) = UC(Hl(ψk)) ∪ UC(Hr(ψk)). (11)

For an unknown d-HAC C, knowing all its bivariate margins, its structure can
be easily determined using Algorithm 1. We start from the sets UC(u1), ...,UC(ud)
joining them together through (11) until we reach the node ψ for which UC(ψ) =
{1, ..., d}.

We illustrate the Algorithm 1 for a 5-HAC given by C(C(u1, u2;ψ2), C(u3, C(
u4, u5;ψ4);ψ3);ψ1) = C(ψ1, ..., ψ4; ((12)(3(45))))(u1, ..., u5). The structure of
this copula is depicted on the left side in Figure 1 and its bivariate margins
are:

(U1, U2) ∼ C(·;ψ2) (U1, U3) ∼ C(·;ψ1) (U1, U4) ∼ C(·;ψ1) (U1, U5) ∼ C(·;ψ1)
(U2, U3) ∼ C(·;ψ1) (U2, U4) ∼ C(·;ψ1) (U2, U5) ∼ C(·;ψ1) (U3, U4) ∼ C(·;ψ3)
(U3, U5) ∼ C(·;ψ3) (U4, U5) ∼ C(·;ψ4)

Now assume that the structure is unknown and only the bivariate margins
are known. We see that UC(ψ1) = {1, 2, 3, 4, 5}, UC(ψ2) = {1, 2}, UC(ψ3) =
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Algorithm 1 The HAC structure determination [24]

Input:
1) UC(ψ1), ...,UC(ψd−1),
2) I = {1, ..., d− 1}

while I 6= ∅ do
1. k = argmini∈I(#UC(ψi)), if there are more minima, then choose as k one of
them arbitrarily.
2. Find the nodes ψl, ψr, for which UC(ψk) = UC(ψl) ∪ UC(ψr).
3. Hl(ψk) := ψl,Hr(ψk) := ψr.
4. Set I := I\{k}.

end while

Output:
The structure stored in Hl(ψk),Hr(ψk), k = 1, ..., d− 1

{3, 4, 5},UC (ψ4) = {4, 5}. For leafs u1, ..., u5, it is defined UC(ui) = {i}, i =
1, ..., 5. In step 1., there are two minima: k = 2 and k = 4. We choose arbitrar-
ily k = 4. As UC(ψ4) = UC(u4) ∪ UC(u5), we set in step 3. Hl(ψ4) := u4 and
Hr(ψ4) := u5. In step 4., we set I = {1, 2, 3}. In the second loop, k = 2. As
UC(ψ2) = UC(u1) ∪ UC(u2), we set in step 3. Hl(ψ2) := u1 and Hr(ψ2) := u2.
In the third loop, we have k = 3. As UC(ψ3) = UC(u3) ∪ UC(ψ4), we set in
step 3. Hl(ψ3) := u3 and Hr(ψ3) := ψ4. In the last loop, we have k = 1. As
UC(ψ1) = UC(ψ2) ∪ UC(ψ3), we set in step 3. Hl(ψ1) := ψ2 and Hr(ψ1) := ψ3.
Observing the original copula form and Figure 1, we see that we have determined
the correct structure, which is stored in Hl(ψk),Hr(ψk), k = 1, ..., 4.

3 Our Approach

3.1 HAC structure determination

Recalling Theorem 3, the sufficient condition for C to be a proper copula is that
the nesting condition must hold for each generator and its parent in a HAC
structure. As this is the only known condition that assures that C is a proper
copula, we deal in our work only with the copulas that fulfill this condition. The
nesting condition results in constraints on the parameters θ1, θ2 of the involved
generators ψ1, ψ2 (see [10,11]). As θi, i = 1, 2 is closely related to τ through (7),
there is also an important relationship between the values of τ and the HAC tree
structure following from the nesting condition. This relationship is described for
the fully-nested 3-HAC given by the form (4) in Remark 2.3.2 in [10]. There, it
is shown that if the nesting condition holds for the parent-child pair (ψ1, ψ2),
then 0 ≤ τ(ψ1) ≤ τ(ψ2) (as we deal only with HACs with binary structures,
which are fully determined by its generator, we use as the domain of τ the set
Ψ instead of the usually used set of all 2-copulas). We generalize this statement,
using our notation, as follows.
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Algorithm 2 The HAC structure determination based on τ

Input:
1) I = {1, ..., d},
2) (U1, ..., Ud) ∼ C,
3) τg ... an aggregated Kendall’s tau,
4) zk = uk,UC(zk) = UC(uk) = {k}, k = 1, ..., d

The structure determination:
for k = 1, ..., d− 1 do

1. (i, j) := argmax
i∗<j∗,i∗∈I,j∗∈I

τg(UUC(zi∗ )UC(zj∗ ))

2. UC(zd+k) := UC(zi) ∪ UC(zj)
3. I := I ∪ {d+ k}\{i, j}

end for

Output:
UC(zd+k), k = 1, ..., d− 1

Proposition 2. Let C be a d-HAC with the structure t and the generators
ψ1, ..., ψd−1, where each parent-child pair satisfy the nesting condition. Then
τ(ψi) ≤ τ(ψj),where ψj ∈ Dn(ψi), holds for each ψi, i = 1, ..., d− 1.

Proof. As ψj ∈ Dn(ψi), there exists a unique sequence ψk1 , ..., ψkl , where 1 ≤
km ≤ d − 1,m = 1, ..., l, l ≤ d − 1, ψk1 = ψi, ψkl = ψj and ψk−1 = P(ψk) for
k = 2, ..., l. Applying the above mentioned remark for each pair (ψk−1, ψk), k =
2, ..., l, we get τ(ψk1) ≤ ... ≤ τ(ψkl). �

Thus, having a branch from t, all its nodes are uniquely ordered according to their
value of τ assuming unequal values of τ for all parent-child pairs. This provides
an alternative algorithm for the HAC structure determination. We have to assign
the generators with the highest values of τ to the lowest levels of the branches in
the structure and ascending to higher levels we assign the generators with lower
values of τ .

Remark 2. τ(ψk) = τg(UUC(Hl(ψk))UC(Hr(ψk))) for a d-HAC C and for each
k = 1, ..., d− 1. This is because the bivariate margins Cij , (i, j) ∈ UC(Hl(ψk))×
UC(Hr(ψk)) of C are all equal and g(u, ..., u) = u for all u ∈ I. Thus τ(ψk)
depends only on the population version of Kendall correlation matrix.

Computing τ(ψk), k = 1, ..., d− 1 using Remark 2 and following Proposition
2 leads to the alternative algorithm for HAC structure determination. The algo-
rithm is summarized in Algorithm 2 and can be used for arbitrary d > 2 (see [8]
for more details including an example for d = 4). It returns the sets UC(zd+k+1)
corresponding to the sets UC(ψk), k = 1, ..., d− 1. Passing them to Algorithm 1,
we avoid their computation from Definition 7 and we get the requested d-HAC
structure without a need of knowing the forms of the bivariate margins. Assum-
ing a family for each ψk, θ − τ relationship for the given family can be used to
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obtain the parameters, i.e., θk = τ−1θ (τ(ψk)), k = 1, ..., d− 1, where τ−1θ denotes
the θ − τ relationship, e.g., for Clayton family τ−1θ (τ) = 2τ/(1 − τ). Hence we
get together with the structure the whole copula.

3.2 HAC estimation

Using τgn instead of τg, we can easily derive the empirical version of the structure
determination process represented by Algorithms 1, 2. In this way, we base the
structure determination only on the values of the pairwise τ . This is an essential
property of our approach. Using the θ−τ relationship established through (7) for
some selected Archimedean family, whole HAC, including its structure and its
parameters, can be estimated just from Kendall correlation matrix computed for
the realizations of (U1, ..., Ud), assuming all the generators to be from a selected
Archimedean family.

The proposed empirical approach is summarized in Algorithm 3. The Kendall
correlation matrix (τnij) is computed for the realizations of the pairs (Ui, Uj), 1 ≤
i < j ≤ d using (8). The algorithm returns the parameters θ̂1, ..., θ̂d−1 of the
estimate Ĉ and the sets UĈ(zd+k) corresponding to the sets UĈ(ψk), k = 1, ..., d−
1. Passing the sets to Algorithm 1 we get the requested Ĉ structure.

If g is set to be the average function, and as τavgn (θk) = g((τn
ĩj̃

)(̃i,j̃)∈UĈ(zi)×UĈ(zj)
),

where i, j are the indices found in step 1. of the algorithm, then τavgn (θk) is an
unbiased estimator of τ(θk), and thus the structure determination is based only
on unbiased estimates, what is another favourable property of the proposed
method.

Due to the nesting condition, the parameter θ̂k is trimmed in step 3. in order
to obtain the resulting estimate as a proper d-HAC. Note that if we allow the
generators to be from different Archimedean families, the task is much more
complex, and we do not concern it in the paper due to space limitations and
refer the reader to [9,10].

Note that the proposed algorithm is just a variation of another famous al-
gorithm, namely the algorithm for agglomerative hierarchical clustering (AHC).
Defining δij = 1 − τnij we establish δij to be a standardly used distance be-
tween the random variables Ui, Uj . Setting g to be the aggregation function
min, avg or max, the algorithm results in (due to δij = 1−τnij) complete-linkage,
average-linkage or single-linkage AHC, respectively. As most of statistical soft-
wares include an implementation of AHC, the implementation of the proposed
algorithm is straightforward. Moreover, adding the dendrogram obtained during
AHC makes the result even more understandable to the user.

4 Experiments

We performed a large number of different experiments on simulated data in-
volving different data dimensions, HAC structures, generators and parameters.
Due to space limitations we present only one experiment, where we compare
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Algorithm 3 The HAC estimation

Input:
1) (τnij) {...Kendall correlations matrix},
2) g {...an aggregation function},
3) I = {1, ..., d},
4) zi = ui, i = 1, ..., d,
5) Archimedean family based on generator ψ and corresponding τ−1

θ

Estimation:
for k = 1, ..., d− 1 do

1. (i, j) := argmax
ĩ<j̃,̃i∈I,j̃∈I

g((τn˜̃i˜̃j
)
(̃̃i,˜̃j)∈U

Ĉ
(z
ĩ
)×U

Ĉ
(z
j̃
)
)

2. θ̂k := τ−1
θ

(
g((τn

ĩj̃
)(̃i,j̃)∈U

Ĉ
(zi)×UĈ(zj)

)
)

3. θ̂k := min(θ̂k, θ̂i, θ̂j)
4. zd+k := C(ui, uj ;ψ)
5. UĈ(zd+k) := UĈ(zi) ∪ UĈ(zj)
6. I := I ∪ {d+ k}\{i, j}

end for

Output:
θ̂k,UĈ(k), k = 1, ..., d− 1

the proposed method with the other previously mentioned methods on sim-
ulated data for d = 5, 6, 7, 9. We simulate 100 samples of size 500, i.e., 500
rows and d columns of simulated data for each sample, according to [11] for 4
copula models based on the Clayton generator. The first considered model is
((12) 3

4
(3(45) 4

4
) 3

4
) 2

4
. The natural numbers in the model notation (as in [23]) are

the indexes of the copula variables, i.e., 1,...5, the parentheses correspond to each
UC(·) of individual copulas, i.e., UC(ψ1) = {1, 2},UC(ψ2) = {4, 5},UC(ψ3) =
{3, 4, 5},UC(ψ4) = {1, 2, 3, 4, 5}, and the subscripts are the model parameters,
i.e, (θ1, θ2, θ3, θ4) = (2

4 ,
3
4 ,

3
4 ,

4
4 ). Note that the indexes of the 4 generators could

be permuted arbitrarily and the particular selection of their ordering serves
just for better illustration. The other 3 models are given with analogous nota-
tion as (1((23) 5

4
(4(56) 6

4
) 5

4
) 4

4
) 2

4
, (1((23) 5

4
(4(5(67) 7

4
) 6

4
) 5

4
) 4

4
) 2

4
and ((1(2(34) 5

4
) 4

4
) 3

4

((56) 4
4
(7(89) 5

4
) 4

4
) 3

4
) 2

4
. The smallest difference between the parameters is set to 1

4 .
As we revealed, while we experimented with different parameterizations, a larger
difference in the parameters could hide the impact of the bias of the concerned
methods on the structure determination, and the results obtained by different
methods can be similar in some of those cases. Setting it to 1

4 fully reveals the
impact of the bias and clearly shows the difference among the methods.

The results for each model are shown in Table 1 and are separated by the
double lines. As we are interested in binary copulas, we choose for the comparison
the methods θbinary, θRML, τbinary, which return binary copula structures as
their results. The first 2 methods are based on ML estimation technique, whereas
the third method is based on the θ − τ relationship. To get the results we used
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their R implementation described in [25]. Our method, implemented in Matlab,
is denoted as τavgbinary, i.e., the involved function g is selected to be the avg function
due to the previously mentioned reasons. As θRML failed in most cases for d ≥ 7,
the results for the method for those dimensions are not presented.

Firstly, we assess the ability of the methods to determine the true copula
structure correctly. This can be seen from the third and the fourth column.
The third column shows 3 the most frequent structures obtained by the method
(if the true structure was not the one of the 3 most frequent structures, then
we show the 2 most frequent structures and the true structure) with average
parameter values. The true structure is emphasized by bold text. The fourth
column shows the frequency of the structures. τavgbinary clearly dominates in all
four cases (d = 5, 6, 7, 9). The other methods show very poor ability to detect
the correct structure, especially for d ≥ 7, where, e.g., θbinary did not return the
correct structure for any among all 100 samples used.

Next, we assess the methods by means of goodness-of-fit. The results can be
seen in the fifth and the sixth column, where the statistics S(K), S(C) (described
in [6]) are computed on all bivariate margins and their maximum (the S(K), S(C)

for the worst fitted bivariate margin) is shown. τavgbinary also dominates in all four
cases. θRML shows also good results, but its time consumption for comparable
results is considerably higher. The remaining methods show poor results, what
is additionally illustrated by the discrepancy between the estimated average
parameter values shown in the third column and the true parameter values.

The next two columns show the average Frobenius norm of the difference
between the Kendall correlation matrix for the true model and the Kendall
correlation matrix for the estimated model and the average Frobenius norm of
the difference between the matrix of lower tail coefficients (cf. [22]) for the true
model and the the matrix of lower tail coefficients for the estimated model (as
in [23]). The comparison results are similar to the goodness-of-fit comparison.
θRML shows slightly better results than τavgbinary and the remaining methods show
significant discrepancy between the theoretical and the empirical quantities.

The last column shows the average computing times needed for a single data
sample. τavgbinary is slightly better that the binary methods θbinary, τbinary, whereas
θRML shows significantly higher time consumption, particularly for d = 6.

5 Conclusion

Copulas are a feasible tool for the modeling of complex patters. A popular alter-
native to Gaussian copulas, the hierarchical Archimedean copulas, are convenient
copula models even in high dimensions due to their flexibility and rather limited
number of parameters. Despite their popularity, a general approach for their
estimation has been addressed only in one recently published paper[23], which
proposes several methods for the estimation task.

We propose an alternative approach to structure determination and estima-
tion of a hierarchical Archimedean copula, which combines the advantages and
avoids the disadvantages of the previously mentioned methods in the terms of
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the correctly determined structures ratio, the goodness-of-fit of the estimates,
and computation time. This is confirmed in the experiments on simulated data
performed for different dimensions and copula models. The proposed method
should be preferred to the other mentioned methods and is particularly attrac-
tive in applications, where a good approximation and computational efficiency
are both crucial issues.
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