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1 Introduction

Hierarchical Archimedean copulas (HACs), which generalize Archimedean copulas (ACs) [13, p. 109],
constitute a popular class of copulas, which has been used in high-dimensional applications. There
exist successful applications of HACs in finance, e.g., for pricing collateralized debt obligations; see
[4, 8]. Given some data, a HAC model can be build using several estimation techniques. Concerning
those techniques, one can see that the estimation of a HAC can generally be divided in two subtasks:
1) structure determination and 2) parameter estimation. Both tasks are connected and hence, if the
structured determination is performed poorly, i.e., if the true structure is not determined, then parameter
estimation also leads to a poor result.

We are aware of two papers [2, 14] addressing both subtasks. The paper [14] describes a multi-stage
HAC estimation procedure, in which the HAC structure is determined iteratively in a bottom-up manner.
The estimation of the parameters is mainly performed using the maximum-likelihood (ML) technique, but
the authors also briefly mention an alternative, which uses the relationship between the copula parameter
and the value of Kendall’s tau computed on a bivariate margin of the copula (shortly, θ− τ relationship).
The experimental results on simulated data show acceptable performance for the low-dimensional (5
variables) copula models considered in the paper. However, for some specific copula models, the quality
of the results given by the mentioned procedure may be poor, as is addressed and experimentally shown
in [2]. The paper [2], which empirically extends the theoretical procedure proposed in [1], also describes
an alternative estimation procedure based on the θ − τ relationship that can be successful in general.

Based on the research presented in the above-mentioned papers, we aim to show that, if the procedure
presented in [14] is properly adjusted, the resulting estimator turns from a generally inconsistent estimator
to a consistent estimator of the copula parameters.

The paper is structured as follows. Section 2 recalls some necessary theoretical concepts concerning
copulas in general, ACs and HACs. Section 3 addresses the problem of the HAC estimation procedure
described in [14]. Section 4 presents our proposed adjustment of the procedure and Section 5 concludes.

2 Preliminaries

2.1 Copulas

Definition 1. For every d ≥ 2, a d-dimensional copula (shortly, d-copula) is a d-variate distribution
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function on Id, I = [0, 1], whose univariate margins are uniformly distributed on I.

Copulas establish a connection between a distribution function (df) H and its margins F1, ..., Fd (we
use the term margin as an equivalent for univariate margin) via H(x) = C(F1(x1), ..., Fd(xd)), x ∈ Rd, as
is well-known by Sklar’s Theorem; see [15]. In case the margins F1, ..., Fd are all continuous, C is uniquely
given by C(u1, ..., ud) = H(F−1 (u1), ..., F−d (ud)), where F−j , j ∈ {1, ..., d}, denotes the pseudo-inverse of

Fj given by F−j (u) = inf{x ∈ R | Fj(x) ≥ u}, u ∈ I. As an example, elliptical copulas are derived in this
way from multivariate elliptical dfs.

2.2 Archimedean Copulas

Archimedean copulas (ACs) are not constructed using Sklar’s Theorem, but instead, one starts with a
given functional form and asks for properties needed to obtain a proper copula. As a result of such
a construction, ACs are expressed in closed form, which is one of the main advantages of this class of
copulas. For construction of ACs, we need the following notions; see [12] for a more general construction
of ACs.

Definition 2. An Archimedean generator (shortly, generator) is a continuous, nonincreasing function
ψ : [0,∞] → [0, 1], which satisfies ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0 and is strictly decreasing on
[0, inf{t ∈ [0,∞) | ψ(t) = 0}]. We denote the set of all such functions by Ψ.

Definition 3. A function f is called completely monotone (shortly, c.m.), if (−1)kf (k)(x) ≥ 0 holds for
every k ∈ N0, x ∈ [0,∞). We denote the set of all completely monotone generators by Ψ∞.

Definition 4. Any d-copula C is called Archimedean copula, if it admits the form

C(u) = C(u;ψ) = ψ(ψ−1(u1) + ...+ ψ−1(ud)), u ∈ Id, (1)

where ψ ∈ Ψ and the ψ−1 : [0, 1]→ [0,∞] is defined ψ−1(s) = inf{t ∈ [0,∞) | ψ(t) = s}, s ∈ I.

A condition sufficient for C to be a copula is stated as follows.

Theorem 1. [10] If ψ ∈ Ψ∞, C given by (1) is a copula in any dimension d.

2.3 Hierarchical Archimedean copulas

A copula is called hierarchical Archimedean if it is an AC with arguments possibly replaced by other
hierarchical Archimedean copulas. In this paper, we consider the working example

C(u) = C0

(
u1, C1(u2, u3), C2(u4, u5, C3(u6, u7, u8))

)
, (2)

where the sector copula Ck denotes an AC with generator ψk, k ∈ {0, 1, 2, 3}. Let us mention at this
point that all presented ideas can be extended to arbitrary HACs (possibly at the cost of a significantly
more complicated notation). Figure 1 shows the corresponding tree representation of this HAC.

According to nesting condition presented by [9, p. 88] and [11], nesting ACs leads to a proper copula
if all nodes of the form ψ−1k ◦ ψl appearing in the hierarchical structure have completely monotone
derivatives. In what follows, we assume this sufficient condition to hold. For a list of generators that
fulfill this condition, see, e.g., [4, p. 65, pp. 115] or [5].

A random vector U distributed according to an HAC allows for a simple stochastic representation;
see [6]. A random vector U distributed according to the HAC (2), e.g., can be represented as

U =

(
ψ0

(E1

V0

)
, ψ1

( E2

V01

)
, ψ1

( E3

V01

)
, ψ2

( E4

V02

)
, ψ2

( E5

V02

)
, ψ3

( E6

V23

)
, ψ3

( E7

V23

)
, ψ3

( E8

V23

))
, (3)

where Ej , j ∈ {1, . . . , 8}, are i.i.d. random variables with standard exponential distribution Exp(1),
independent of the random variables V0, V01, V02 and V23. The most important ingredients of the
stochastic representation (3) are the random variables V0, V01, V02 and V23. The dependence among
these random variables determines the tree structure of the HAC. It can be described as follows. First,
draw V0 ∼ F0(x) = LS−1[ψ0](x), where LS denotes Laplace-Stieltjes transform, i.e., V0 is distributed
according to the distribution whose Laplace-Stieltjes transform is ψ0. Next, draw V01|V0 ∼ F01(x;V0) =
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Figure 1 Tree structure of the HAC C as given in (2).

LS−1[ψ01(· ;V0)](x), where ψ01(t;V0) = exp
(
−V0ψ−10 (ψ1(t))

)
. Similarly, draw V02|V0 ∼ F02(x;V0) =

LS−1[ψ02(· ;V0)](x), where ψ02(t;V0) = exp
(
−V0ψ−10 (ψ2(t))

)
. Finally, on the innermost nesting level

of the copula C in (2), the random variable V23 resides. Its distribution is determined by V23|V02 ∼
F23(x;V02) = LS−1[ψ23(· ;V02)](x), where ψ23(t;V02) = exp

(
−V02ψ−12 (ψ3(t))

)
. To summarize, the tree-

like (or cascading) dependence structure of a HAC stems from the distribution of the random variables
V0, V01, V02 and V23. Furthermore, note that the HAC (2) is simply survival copula [4, p. 36] of the
random vector (

E1

V0
,
E2

V01
,
E3

V01
,
E4

V02
,
E5

V02
,
E6

V23
,
E7

V23
,
E8

V23

)
.

Indeed, E1/V0 has survival function ψ0, Ej/V01 has survival function ψ1, j ∈ {2, 3}, Ej/V02 has survival
function ψ2, j ∈ {4, 5}, and Ej/V23 has survival function ψ3, j ∈ {6, 7, 8}. To check the last, e.g., note
that

P(Ej/V23 > t) = P(Ej > tV23) = E[1Ej>tV23
] = E[E[1Ej>tV23

|V23]] = E[exp(−V23t)]
= E[E[exp(−V23t)|V02]] = E

[
exp
(
−V02ψ−12 (ψ3(t))

)]
= E

[
E
[
exp
(
−V02ψ−12 (ψ3(t))

)
|V0
]]

= E
[
exp
(
−V0ψ−10

(
ψ2

(
ψ−12 (ψ3(t))

)))]
= E

[
exp
(
−V0ψ−10 (ψ3(t))

)]
= ψ0

(
ψ−10 (ψ3(t))

)
= ψ3(t).

3 Transformation using the Kendall distribution function

First, consider the sector copula C3 and note that (U6, U7, U8) ∼ C3. After having estimated the parame-
ter(s) of C3 (see [7] for some available AC estimators), one can let the vector (U6, U7, U8) collapse to a sin-
gle component UK3,3 in such a way that the parameters of the dependence structure of (U1, . . . , U5, UK3,3)
can be estimated. Due to the popularity of the Kendall distribution function, one might be tempted to
choose UK3,3

as K3,3

(
ψ3((E6 +E7 +E8)/V23)

)
, where Kk,l denotes the Kendall distribution function in k

dimensions based on ψl and the term ψ3((E6 +E7 +E8)/V23) is the Kendall transformation of the vector
(U6, U7, U8), i.e., ψ3((E6+E7+E8)/V23) = ψ3(ψ−13 (ψ3(E6/V23))+ψ−13 (ψ3(E7/V23))+ψ−13 (ψ3(E8/V23))) =
C3(U6, U7, U8). This approach is suggested by [14]. We will now show that (U1, . . . , U5, UK3,3) does in
general not have the copula

C0

(
u1, C1(u2, u3), C2(u4, u5, u6)

)
(4)

as distribution function. It follows that this estimation procedure is inconsistent for the parameters
that correspond to all but the innermost sector copulas. This fact is supported empirically by the
simulation studies in [2, 14] and has also been suspected in [3]. In what follows, we derive the copula
of (U1, . . . , U5, UK3,3

). Furthermore, we suggest an approach how to collapse (U6, U7, U8) in such a way
that we obtain a random vector following (4).

For u1, ..., u6 ∈ [0, 1], assume x1 = ψ−10 (u1), x2 = ψ−11 (u2), x3 = ψ−11 (u3), x4 = ψ−12 (u4), x5 = ψ−12 (u5)

3



and x6 = ψ−13 (K−13,3(u6)). By stepwise conditioning on V0, V01, V02 and V23, one can find that

P
(
E1

V0
> x1,

E2

V01
> x2,

E3

V01
> x3,

E4

V02
> x4,

E5

V02
> x5,

E6 + E7 + E8

V23
> x6

)
=

∫ ∞
0

exp(−v0x1)

(∫ ∞
0

exp(−v01(x2 + x3)) dF01(v01; v0)

∫ ∞
0

exp(−v02(x4 + x5))

·
∫ ∞
0

P(E6 + E7 + E8 > V23x6|V23 = v23) dF23(v23; v02)dF02(v02; v0)

)
dF0(v0). (5)

Taking into account the fact that the sum of n independent Exp(1) distributed random variables follows

an Erlang distribution with survival function F̄Erl,n(x) = exp(−x)
∑n−1
k=0 x

k/k!, x ∈ [0,∞), we obtain∫ ∞
0

P(E6 + E7 + E8 > V23x6|V23 = v23) dF23(v23; v02) =

∫ ∞
0

P(E6 + E7 + E8 > v23x6) dF23(v23; v02)

=

2∑
k=0

(−x6)k

k!

∫ ∞
0

(−v23)k exp(−v23x6) dF23(v23; v02) =

2∑
k=0

(−x6)k

k!

∫ ∞
0

dk

dxk6
exp(−v23x6) dF23(v23; v02)

=

2∑
k=0

(−x6)k

k!

dk

dxk6
E[exp(−V23x6)|V02 = v02].

Using linearity, (5) therefore equals

2∑
k=0

(−x6)k

k!

dk

dxk6

∫ ∞
0

exp(−v0x1)

(∫ ∞
0

exp(−v01(x2 + x3)) dF01(v01; v0)

·
∫ ∞
0

exp(−v02(x4 + x5))E[exp(−V23x6)|V02 = v02] dF02(v02; v0)

)
dF0(v0)

=

2∑
k=0

(−x6)k

k!

dk

dxk6
E
[
exp(−V0x1)E[exp(−V01(x2 + x3))|V0]

· E
[
exp(−V02(x4 + x5))E[exp(−V23x6)|V02]

∣∣∣V0]]
=

2∑
k=0

(−x6)k

k!

dk

dxk6
E
[
exp(−V0x1)E[exp(−V01(x2 + x3))|V0]

· E
[
exp(−V02(x4 + x5)) exp

(
−V02ψ−12 (ψ3(x6))

)∣∣∣V0]]
=

2∑
k=0

(−x6)k

k!

dk

dxk6
E
[
exp(−V0x1) exp

(
−V0ψ−10 (ψ1(x2 + x3))

)
· exp

(
−V0ψ−10

(
ψ2

(
x4 + x5 + ψ−12 (ψ3(x6))

)))]
=

2∑
k=0

(−x6)k

k!

dk

dxk6
ψ0

(
x1 + ψ−10 (ψ1(x2 + x3)) + ψ−10

(
ψ2

(
x4 + x5 + ψ−12 (ψ3(x6))

)))
,

so that the copula of (U1, . . . , U5, UK3,3
) at (u1, . . . , u6) is not (4) but

2∑
k=0

(
−ψ−13 (K−13,3(u6))

)k
k!

dk

dxk6
C0

(
u1, C1(u2, u3), C2(u4, u5, ψ3(x6))

)∣∣∣
x6=ψ

−1
3 (K−1

3,3(u6))
. (6)

Although the implications of the representation (6) are unclear at the moment, we can interpret (6) as
the Taylor polynomial of order two of x6 7→ C0

(
u1, C1(u2, u3), C2(u4, u5, ψ3(x6))

)
about ψ−13 (K−13,3(u6))

evaluated at zero. If the dimension of the sector copula C3 converges to infinity, we get (with the same
argument) the Taylor polynomial of order infinity and hence the function itself evaluated at 0, which
is C0(u1, C1(u2, u3), C2(u4, u5, ψ3(x6))) at x6 = 0 and thus C0(u1, C1(u2, u3), C2(u4, u5)), which is the
marginal copula of C for u6 = u7 = u8 = 1.
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4 Transformation using the diagonal of the Archimedean copula

As becomes directly clear from (2) or its tree representation in Figure 1, if we build marginal copulas
of (2) for two of the components with index in {6, 7, 8} being 1, we obtain (4). This means that after
estimation of the parameters of C2 one could (e.g., randomly) choose one of the components with index
in {6, 7, 8} for continuing with the parameter estimation on higher levels in (4). On the one hand, an
advantage would be that the estimation error for the parameter of C3 is not inherited. On the other hand,
choosing just one component means reducing the available information. In what follows, we therefore
describe a complementary procedure that is based on the copula diagonal of C3 and shares the properties
that are opposite to those mentioned above.

For constructing a random vector distributed according to (4), one can consider

Uδ3,3 = δ3,3(max{U6, U7, U8}), (7)

where δk,l(t) := ψl(kψ
−1
l (t)) denotes the diagonal in dimension k of the AC generated by ψl [7]. Note that

P(Uδ3,3 ≤ x) = P(max{U6, U7, U8} ≤ ψ3(ψ−13 (x)/3)) = P(U6 ≤ ψ3(ψ−13 (x)/3)), U7 ≤ ψ3(ψ−13 (x)/3)), U8 ≤
ψ3(ψ−13 (x)/3))) = C3(ψ3(ψ−13 (x)/3), ψ3(ψ−13 (x)/3), ψ3(ψ−13 (x)/3)) = x, provided C3 is an AC with gen-
erator ψ3, hence Uδ3,3 ∼ U[0, 1], where U[0, 1] denotes the univariate uniform distribution on [0, 1]. Since

the maximum is distributed according to the copula diagonal, see that δ−13,3(U) ∼ δ3,3 for any U ∼ U[0, 1],

one effectively replaces the copula C3 by its diagonal. Assume x1, ..., x5 as above and x6 = ψ−13 (u6),
and note that ψ−13 (Uδ3,3) = 3

(
ψ−13

(
max{ψ3( E6

V23
), ψ3( E7

V23
), ψ3( E8

V23
})
))

= 3 min{ E6

V23
, E7

V23
, E8

V23
}. Then the

resulting survival function can be computed as

P
(
E1

V0
> x1,

E2

V01
> x2,

E3

V01
> x3,

E4

V02
> x4,

E5

V02
> x5,

3 min{E6, E7, E8}
V23

> x6

)
=

∫ ∞
0

exp(−v0x1)

(∫ ∞
0

exp(−v01(x2 + x3)) dF01(v01; v0)

∫ ∞
0

exp(−v02(x4 + x5))

·
∫ ∞
0

exp
(
−v23

(x6
3

+
x6
3

+
x6
3

))
dF23(v23; v02) dF02(v02; v0)

)
dF0(v0)

= E
[
exp(−V0x1)E[exp(−V01(x2 + x3))|V0]

· E
[
exp(−V02(x4 + x5))E

[
exp
(
−V23

(x6
3

+
x6
3

+
x6
3

))∣∣∣V02]∣∣∣∣V0]]
= E

[
exp(−V0x1)E[exp(−V01(x2 + x3))|V0]E

[
exp(−V02(x4 + x5)) exp

(
−V02ψ−12 (ψ3(x6))

)∣∣V0]]
= E

[
exp(−V0x1)E[exp(−V01(x2 + x3))|V0]E

[
exp
(
−V02

(
x4 + x5 + ψ−12 (ψ3(x6))

))∣∣∣V0]]
= E

[
exp(−V0x1) exp

(
− V0ψ−10 (ψ1(x2 + x3))

)
exp
(
−V0ψ−10

(
ψ2

(
x4 + x5 + ψ−12 (ψ3(x6))

)))]
= E

[
exp
(
−V0

(
x1 + ψ−10 (ψ1(x2 + x3)) + ψ−10

(
ψ2

(
x4 + x5 + ψ−12 (ψ3(x6))

))))]
= ψ0

(
x1 + ψ−10 (ψ1(x2 + x3)) + ψ−10

(
ψ2

(
x4 + x5 + ψ−12 (ψ3(x6))

)))
,

so that the copula of (U1, . . . , U5, Uδ3,3) at (u1, . . . , u6) is indeed the HAC (4). We can therefore continue
in the same fashion with estimating and further collapsing the sectors on the innermost nesting levels of
this copula, i.e, in the same fashion as in the multi-stage procedure described in [14].

5 Conclusion

To summarize, when using the transformation based on the Kendall distribution function, the copula of
(U4, U5, UK3,3) is generally not C2. Hence, if we wrongly assume that (U4, U5, UK3,3) ∼ C2, then even if
a consistent estimator for the parameters of the copula C2 is used, the resulting estimator is in general
inconsistent for the parameter(s) of C2. In contrast, if the transformation based on the diagonal of the
AC is used (or any component with index in {6, 7, 8}), it is assured that the sector copulas in higher
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nesting levels of the estimated HAC are the distribution functions of the corresponding random vectors,
i.e., (U4, U5, Uδ3,3) ∼ C2 and (U1, Uδ2,1 , Uδ3,2) ∼ C0. Using any consistent estimator for the parameters of
an AC, the resulting estimator for the parameters of the HAC is consistent.
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